Главная » Лекции по Химии » Лекция № 18 Липиды

Лекция № 18 Липиды

Лекция № 18

ЛИПИДЫ

План

1. Омыляемые липиды.

1.1. Классификация и основные структурные компоненты.

1.2. Нейтральные липиды.

1.3. Фосфолипиды.

1.4. Гликолипиды.

2. Неомыляемые липиды.

2.1.Терпены.

2.2. Стероиды.

Лекция № 18

ЛИПИДЫ

План

1. Омыляемые липиды.

1.1. Классификация и основные структурные компоненты.

1.2. Нейтральные липиды.

1.3. Фосфолипиды.

1.4. Гликолипиды.

2. Неомыляемые липиды.

2.1.Терпены.

2.2. Стероиды.

Липиды – это входящие в состав живых организмов жироподобные
вещества, плохо растворимые в воде и хорошо растворимые в неполярных
органических растворителях. Под этим названием объединяют разные по химическому
строению и биологическим функциям вещества, которые извлекают из растительных и
животных тканей путем экстракции неполярными органическими растворителями.

В зависимости от способности к гидролизу с образованием солей высших жирных
кислот (мыл) липиды делят на омыляемые и неомыляемые.

  1. Омыляемые липиды

Омыляемые липиды состоят из двух или более структурных
компонентов, на которые они расщепляются при гидролизе под действием кислот,
щелочей или ферментов липаз.

1.1. Классификация и основные
структурные компоненты.

Основными структурными компонентами омыляемых липидов являются спирты и
высшие жирные кислоты. Омыляемые липиды более сложного строения могут содержать
остатки фосфорной кислоты, аминоспиртов, а также остатки моно- и
олигосахаридов.

Высшие жирные кислоты – это карбоновые кислоты, насыщенные или ненасыщенные,
выделенные из жиров путем гидролиза. Для их строения характерны следующие
основные особенности:

    • имеют неразветвленную
      структуру с четным числом атомов углерода от С2 до С80,
      но чаще всего встречаются кислоты состава С16, С18 и С20;
    • ненасыщенные кислоты,
      как правило, содержат двойную связь в положении 9;
    • если двойных связей
      несколько, то они разделены группой СН2;
    • двойные связи в
      ненасыщенных кислотах имеют цис-конфигурацию.

Основные жирные кислоты приведены в таблице 12.

 Таблица 12. Основные жирные
кислоты в составе липидов.

 

Название

Число атомов С

Формула

Структура

Насыщенные

Масляная

С4

C3H7COOH

СH3(CH2)2COOH

Капроновая

С6

C5H11COOH

СH3(CH2)4COOH

Каприловая

С8

C7H15COOH

СH3(CH2)6COOH

Каприновая

С10

C9H19COOH

СH3(CH2)8COOH

Лауриновая

С12

C11H23COOH

СH3(CH2)10COOH

Миристиновая

С14

C13H27COOH

СH3(CH2)12COOH

Пальмитиновая

С16

C15H31COOH

СH3(CH2)14COOH

Стеариновая

С18

C17H35COOH

СH3(CH2)16COOH

Арахиновая

С20

C19H39COOH

СH3(CH2)18COOH

Ненасыщенные

Олеиновая

С18

C17H33COOH

Линолевая

С18

C17H31COOH

Линоленовая

С18

C17H29COOH

Арахидоновая

С20

C19H31COOH

 

 

Ненасыщенные жирные кислоты (линолевая, линоленовая, арахидоновая) являются незаменимыми и поступают в организм человека в основном с растительными маслами. Насыщенные
жирные кислоты синтезируются в организме из уксусной кислоты ферментативным
путем.

В составе липидов высшие жирные кислоты связаны сложноэфирными или амидными
связями со спиртами, важнейшими из которых являются трехатомный спирт глицерин и аминоспирт сфингозин.

Сфингозин содержит два хиральных атома углерода в положениях 2 и 3, а также
кратную связь и, следовательно, имеет 8 стереоизомеров. Природный сфингозин
имеет транс-конфигурацию двойной связи и D-конфигурации хиральных
центров.

В соответствии с их химическим строением и биологическими функциями
различают три основные группы омыляемых липидов: нейтральные липиды,
фосфолипиды
и гликолипиды.
 
 


 
 

1.2. Нейтральные липиды

Нейтральные липиды представляют собой сложные эфиры высших жирных кислот и
спиртов (высших одноатомных, глицерина, холестерина и др). Наиболее важными из
них являются триацилглицериды и воски.

Триацилглицериды

Триацилглицериды – это сложные эфиры глицерина и высших жирных
кислот.

Общая формула:

Простые триацилглицериды содержат остатки одинаковых, смешанные – разных
жирных кислот. Названия триацилглицеридов строятся на основе названий ацильных
остатков, входящих в их состав жирных кислот.

Смешанные триацилглицериды могут содержать хиральный атом углерода в
положении 2 и иметь энантиомеры, например:

Для их обозначения используется стереоспецифическая нумерация (sn). Если в
проекции Фишера группа ОН (или ее производное) при С2 находятся
слева, то атому С над ней присваивается номер 1, а под ней – номер 3 и
наоборот, например:

Триацилглицериды – малополярные, не растворимые в воде вещества, так как их
молекулы не содержат сильнополярных или заряженных групп. Триацилглицериды,
содержащие преимущественно остатки ненасыщенных кислот, при обычных условиях
являются жидкостями, насыщенных кислот – твердыми веществами. Они входят в
состав животных жиров и растительных масел, которые представляют собой смеси
триацилглицеридов. Животные жиры содержат в основном триацилглицериды с
остатками насыщенных кислот и поэтому имеют твердую консистенцию. Растительные
масла включают в основном остатки ненасыщенных кислот и являются жидкостями.
Основная биологическая функция триацилглицеридов – запасные вещества животных и
растений.

Химические свойства триацилглицеридов определяются наличием сложноэфирной
связи и ненасыщенностью. Как сложные эфиры триацилглицериды гидролизуются под
действием кислот и щелочей, а также вступают в реакцию переэтерификации.

При щелочном гидролизе (омылении) жиров образуются соли жирных кислот
(мыла). Их молекулы дифильны (содержат полярную “голову” и неполярный “хвост”),
что обуславливает их повехностно-активные свойства и моющее действие.

По реакции переэтерификации получают смеси сложных эфиров жирных кислот,
которые в отличие от самих кислот легко летучи и могут быть разделены путем
перегонки или газожидкостной хроматографии. Далее путем гидролиза их превращают
в индивидуальные карбоновые кислоты или используют в виде эфиров, например, в
качестве лекарственных препаратов, восполняющих недостаток незаменимых жирных
кислот в организме (лекарственный препарат линетол).

Триацилглицериды, содержащие остатки ненасыщенных жирных кислот, вступают в
реакции присоединения по двойной связи.

Реакция присоединения галогенов используется для определения содержания
остатков ненасыщенных кислот в жирах. Количественной характеристикой степени
ненасыщенности жиров служит иодное число – количество иода (в г),
которое могут поглотить
100 г
жира. У животных жиров иодное число меньше 70, у растительных масел больше 70.

Важным промышленным процессом является гидрогенизация жиров – каталитическое
гидрирование растительных масел, в результате которого водород насыщает двойные
связи, и жидкие масла превращаются в твердые жиры (маргарин). В процессе
гидрогенизации происходит также изомеризация – перемещение двойных связей (при
этом из полиненасыщенных кислот образуются кислоты с реакционноспособными, в
том числе и в реакциях окисления, сопряженными двойными связями) и изменение их
стереохимической конфигурации (цис в транс), а также частичное
расщепление сложноэфирных связей. Существует мнение, что при этом образуются
вещества небезопасные для организма. Наибольшей пищевой ценностью обладают
растительные масла, которые наряду с незаменимыми жирными кислотами содержат
необходимые для организма фосфолипиды, витамины, полезные фитостерины
(предшественники витамина D) и практически не содержат холестерин.

Воски

Воски – это сложные эфиры жирных кислот и высших одноатомных спиртов
12 – С46). Воски входят в состав защитного покрытия
листьев растений и кожи человека и животных. Они придают поверхности
характерный блеск и водоотталкивающие свойства, что важно для сохранения воды
внутри организма и создания барьера между организмом и окружающей средой.

1.3. Фосфолипиды

Фосфолипиды – общее название липидов, содержащих остаток фосфорной кислоты.
Фосфолипиды – основные липидные компоненты клеточных мембран.

Фосфоглицериды

Основные структурные компоненты, составляющие молекулы фосфоглицеридов, –
это глицерин, жирные кислоты, фосфорная кислота, аминоспирты (этаноламин или
холин) или аминокислота серин. Их рассматривают как производные
L-глицеро-3-фосфата

в котором спиртовые группы этерифицированы жирными кислотами, а остаток
фосфорной кислоты образует сложноэфирную связь с аминоспиртом. Общая формула
фосфоглицеридов:

При нагревании в кислой и щелочной средах фосфоглицериды гидролизуются,
распадаясь на основные структурные компоненты.

Фосфосфинголипиды

Основные структурные компоненты молекул фосфосфинголипидов – сфингозин,
жирные кислоты, фосфорная кислота, аминоспирты этаноламин или холин.

Общая формула:
 
 

Молекулы фосфолипидов дифильны. Они содержат полярную гидрофильную
“голову” и неполярный гидрофобный “хвост”. В водной среде они способны
образовывать сферические мицеллы – липосомы, которые можно рассматривать
как модель клеточных мембран.

Фосфолипиды – основные структурные компоненты клеточных мембран. Согласно жидкостно-мозаичной модели клеточные мембраны рассматриваются как липидные бислои. В таком бислое
углеводородные радикалы фосфолипидов за счет гидрофобных взаимодействий
находятся внутри, а полярные группы липидов располагаются на внешней
поверхности бислоя. В жидкий липидный бислой встроены молекулы белков.

 

1.4.
Гликолипиды

Гликолипиды содержат углеводные остатки и не содержат фосфорной кислоты.
Наиболее важными из них являются гликосфинголипиды. Основные структурные
компоненты гликосфинголипидов: сфингозин, жирная кислота, моно- или
олигосахсрид. Общая формула:

Типичные представители гликосфинголипидов – цереброзиды и ганглиозиды.

Цереброзиды содержат остатки D-галактозы или D-глюкозы, которые связаны с ОН
группой сфингозина b -гликозидной
связью. Цереброзиды входят в состав мембран нервных клеток.

Ганглиозиды содержат остатки сложных олигосахаридов, способных нести
отрицательный заряд за счет присутствия в них остатков сиаловых кислот.
Ганглиозиды выделены из серого вещества мозга. Они образуют рецепторные участки
на поверхности клеточных мембран.
 
 

2.
Неомыляемые липиды

К неомыляемым относят липиды, которые не являются производными жирных кислот
и не способны к гидролизу. Под этим названием имеют в виду огромное число
разных по химическому строению и биологическим функциям природных соединений,
которые объединяет сходство в строении углеродного скелета. Углеродный остов их
молекул простроен из пятиуглеродных изопентановых фрагментов, соединенных по
типу “голова к хвосту”.

По строению скелета и ненасыщенности их можно рассматривать как олигомеры
диенового углеводорода изопрена. Отсюда происходит другое их название – изопреноиды.
Сходство в строении объясняется общими путями биосинтеза изопреноидов. Они
образуются в живых организмах ферментативным путем из уксусной кислоты.
Ключевым промежуточным соединением, из пятиуглеродных фрагментов которого
строится углеродный скелет изопреноидов, является изопентенилфосфат:



Известны две основные группы изопреноидов: терпены и стероиды.
 
 

2.1. Терпены

Терпенами называют углеводороды состава (С5H8)n,
где nі 2, которые формально можно
рассматривать как продукты олигомеризации изопрена (хотя в действительности они
образуются другим путем):

Кислородсодержащие производные терпенов называют терпеноидами.
Терпены и терпеноиды имеют в основном растительное происхождение. Это эфирные
масла растений, смолы хвойных деревьев и каучуконосов, растительные пигменты,
жирорастворимые витамины.

Терпены классифицируют по числу изопреновых звеньев в молекуле.
 

Таблица 13. Классификация терпенов.

Тип терпена

Число изопреновых
звеньев

5H8)n

Число атомов
углерода

Монотерпен

n=2

C10

Сесквитерпен

n=3

C15

Дитерпен

n=4

C20

Тритерпен

n=6

C30

Тетратерпен

n=8

C40

Отсутствие терпенов с нечетным числом изопреновых звеньев (за исключением
сесквитерпенов) объясняется особенностями их биосинтеза. Кроме того, каждый тип
терпенов может иметь линейную структуру или содержать один, два, три и более
циклов.

Монотерпены и терпеноиды

Монотерпены – это димеры изопрена; имеют состав С10Н16.
Это легко летучие соединения с приятным запахом, которые составляют основу
эфирных масел растений. Известны монотерпны ациклического, моно-, би- и
трициклического строения.

Ациклические монотерпены

Ациклические монотерпены имеют линейную структуру и содержат три двойных
связи.

Монотерпены мирцен и оцимен содержатся в эфирных маслах хмеля
и лавра. Монотерпеновые спирты, например, гераниол, являются основными
компонентами эфирных масел розы, герани и других цветочных эссенций.
Соответствующие альдегиды (гераниаль) имеют запах цитрусовых и
содержатся в эфирных маслах лимона.

Моноциклические монотерпены

Содержат один цикл и две двойных связи. Основу углеродного скелета этого
типа терпенов составляет насыщенный углеводород ментан.

Монотерпен лимонен содержит хиральный атом углерода и существует в
двух энатиомерных формах. (-)Лимонен (левовращающий) содержится в лимонном
масле и скипидаре. (+)Лимонен (правовращающий) входит в состав масла тмина.
Рацемический лимонен получают димеризацией изопрена. Гидратация двойных связей
лимонена протекает в соответствии с правилом Марковникова и дает двухатомный
спирт терпин, который используется в медицине при лечении бронхита.

Ментол содержится в эфирном масле перечной мяты. Он обладает антисептическим
и успокаивающим действием. Структура ментола содержит три хиральных атома
углерода, ей соответствует 8 стереоизомеров. Природный ментол существует в
конформации кресла, где все три заместителя занимают экваториальное положение.

Бициклические монотерпены

Содержат два цикла и одну двойную связь. Основу их углеродного скелета
составляют углеводороды каран, пинан и камфан, которые могут быть
построены из ментана путем замыкания еще одного цикла за счет образования
мостика изопропильной группой при замыкании ее в орто-, мета- или
пара-положения ментанового цикла.

Бициклический монотерпен ряда пинана a-пинен
основная составная часть скипидара. Наиболее важным терпеноидом ряда
камфана является камфора, которая используется как стимулятор сердечной
деятельности. Структуры a -пинена и
камфоры содержат два хиральных атома углерода и должны иметь 4 стереоизомера.
Однако из-за жесткости структур возможно существование только двух энантиомерных
форм.


 
 

Сесквитерпены и терпеноиды

Сесквитерпены – это тримеры изопрена, имеют состав С15Н24.
Как и монотерпены, эти вещества находятся в эфирных маслах растений. Например,
ациклический терпеновый спирт фарнезол – душистый компонент ландыша.



Дитерпены и терпеноиды

Дитерпены – это тетраизопреноиды, содержат в молекуле 20 атомов углерода.
Важную биологическую роль играют дитерпеновые спирты: фитол – спирт, в
виде сложного эфира входящий в состав хлорофилла, и витамин А (ретинол).

Тетраизопреноидные фрагменты содержат молекулы жирорастворимых витаминов Е и
К1.


 
 

Тритерпены и терпеноиды

Содержат шесть изопреновых фрагментов. Наиболее важным тритерпеном является сквален С30Н50, выделенный из печени акулы. Сквален является
биологическим предшественником стероидов (промежуточный продукт в биосинтезе
холестерина).


 
 

Тетратерпены и терпеноиды

Содержат восемь изопреновых фрагментов. Тетратерпены широко распространены в
природе. Наиболее важными из них являются растительные пигменты – каротиноиды.
Их молекулы содержат длинную систему сопряженных двойных связей и поэтому
окрашены. b -Каротин – растительный
пигмент желто-красного цвета, в большом количестве содержащийся в моркови,
томатах и сливочном масле. Все каротины – предшественники витаминов группы А.
Молекула b -каротина состоит из двух
одинаковых частей и in vivo превращается в две молекулы витамина А.


 
 


2.2 Стероиды

Стероиды – природные биологически активные соединения, основу структуры
которых составляет углеводород стеран. Как и терпены стероиды относятся
к изопреноидам и связаны с ними общими путями биосинтеза.

Большинство стероидов имеют метильные группы в положениях 10 и 13, а также
заместитель в положении 17, содержащий до 10 атомов С. В зависимости от
величины заместителя в положении 17 различают три основные группы стероидов: стерины,
желчные кислоты
и стероидные гормоны.

Стереохимия стероидов

Незамещенный стеран содержит 6 хиральных атомов углерода в местах сочленения
циклов и должен иметь 64 стереоизомера. Введение заместителей к любому атому
углерода стерана также делает его хиральным. Однако возможное число
стереоизомеров ограничено из-за жесткости структуры.

Стереохимическая конфигурация стерана определяется типом сочленения колец А,
B, C и D. При транс-сочленении заместители у узловых атомов углерода (С5 и С10; С8 и С9; С13 и С14)
находятся по разные стороны цикла, при цис-сочленении – по одну сторону.
Теоретически возможно 8 различных комбинаций сочленения 4-х колец стерана.
Однако в природных стероида сочленение колец В/С и С/D, как правило, транс,
а колец A/В — цис или транс.

Расположение заместителей в кольце стерана над или под плоскостью кольца обозначается
буквами b и a соответственно. Тип сочленения колец В/С и С/D неизменен и
поэтому не указывается. Тип сочленения колец A/В указывается по ориентации
заместителя в положении 5: 5a -стероид
имеет транс-сочленение, а 5b -стероид цис-сочленение колецА/В. Таким образом различают два
стереохимических ряда стероидов: 5a -стероиды и5b -стероиды.

Для изображения стероидов используют конформационные формулы или плоское
изображение. В последнем случае заместители изображают либо над плоскостью (b -конфигурация), либо под плоскостью (a -конфигурация) чертежа.

Стерины

Стерины – природные спирты ряда стероидов, основа углеродного скелета
которых — углеводород холестан.

Все стерины содержат группу ОН в положении 3 и являются, таким образом,
вторичными спиртами. Стерины присутствуют во всех тканях животных и растений.
Они являются промежуточными продуктами в биосинтезе желчных кислот и стероидных
гормонов. Примерами стероидов животного происхождения являются холестанол и холестерин. По номенклатуре ИЮПАК названия стероидов строятся в
соответствии с правилами заместительной номенклатуры. При этом за родоначальную
структуру берется соответствующий насыщенный углеводород, в случае стеринов это
холестан.

Холестерин является наиболее распространенным стерином животных и человека.
Он присутствует во всех животных липидах, крови и желчи. Мозг содержит 7%
холестерина в расчете на сухую массу. Нарушение обмена холестерина приводит к
его отложению на стенках артерий и атеросклерозу, а также к образованию желчных
камней.

Желчные кислоты

Желчные кислоты – это гидроксикарбоновые кислоты ряда стероидов. Основа
строения желчных кислот – углеводород холан.

Желчные кислоты образуются в печени из холестерина. Натриевые и калиевые
соли желчных кислот являются поверхностно-активными веществами. Эмульгируя
жиры, они способствуют их всасывание и перевариванию.

Стероидные гормоны

Стероидные гормоны – физиологически активные вещества ряда стероидов,
вырабатываемые железами внутренней секретиции. По химическому строению и
биологическому действию различают гормоны коры надпочечников (кортикостероиды),
мужские половые гормоны (андрогены) и женские половые гормоны (гестагены и эстрогены). Каждому типу стероидных гормонов соответствует
углеводород, который составляет основу их углеродного скелета. Для
кортикостероидов и гестагенов это – прегнан, андрогенов – андростан,
эстрогенов – эстран.

На рисунке приведены примеры некоторых стероидных гормонов, вырабатываемые
разными железами внутренней секреции.

Кортикостерон – гормон коры надпочечников, регулирует углеводный
обмен, действует как антагонист инсулина, повышая содержание сахара в крови. Тестостерон – мужской половой гормон, стимулирует развитие вторичных половых признаков. Эстрадиол – женский половой гормон, контролирует менструальный цикл.

Лекция № 18 Липиды: 1 комментарий

  • 08.01.2012 в 15:35
    Permalink

    не могу скачать лекцию. совсем нет ссылок.

    Ответ

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

X

Pin It on Pinterest

X
Share This